


**Rudolf Velich** 

# Odborné učebné texty

z nemeckého jazyka



pre stredné odborné školy elektrotechnického zamerania



# **RNDr. Rudolf Velich**

# Odborné učebné texty

z nemeckého jazyka

pre stredné odborné školy elektrotechnického zamerania



### Recenzenti:

Mgr. Zdenka Tánczos PhDr. Adriana Vráblová

### Odborná spolupráca:

Walter Denk

Copyright © 2011, 2022 by RNDr. Rudolf Velich Slovak edition © 2022 by IKAR, a.s.

"Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky pod č. 2018/5363:9-10K0 ako učebnicu Odborné učebné texty z nemeckého jazyka pre stredné odborné školy elektrotechnického zamerania. Schvaľovacia doložka nadobúda účinnosť 15. 01. 2019 a má platnosť do 31. 08. 2024."

Jazyková úprava: Mária Hýlová Vydalo vydavateľstvo IKAR a.s. – PRÍRODA Bratislava v roku 2022 ako svoju 2 307. publikáciu v elektronickej podobe Druhé vydanie, v Ikare prvé Sadzba a zalomenie do strán: ITEM, spol. s. r. o., Bratislava Tlač: Alfa print, spol. s. r. o., Martin

ISBN 978-80-551-9712-8

# **INHALT**

|   | NA ÚVOD / VORWORT                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                        |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1 | GRUNDLAGEN DER ELEKTROTECHNIK UND ELEKTRONIK                                                                                                                                                                                                                                                                                                                                                                                                   | g                                                        |
|   | <ul> <li>1.1 Physikalische Größen</li> <li>1.2 Grundbegriffe der Elektrotechnik</li> <li>1.3 Hans Christian Oersted, Vater der Elektrotechnik?</li> <li>1.4 Reihenschaltung von Widerständen</li> <li>1.5 Gleichstromnetzwerke</li> <li>1.6 Elektrische Kapazität</li> <li>1.7 Wichtige Fachbegriffe</li> <li>1.8 Wechselstrom</li> <li>1.9 Nichtlineare Schaltungen</li> <li>1.10 Ein Physiker, ein Mathematiker und ein Ingenieur</li> </ul> | 9<br>10<br>11<br>12<br>12<br>13<br>13<br>14<br>15        |
| 2 | ELEKTRISCHE MASCHINEN UND GERÄTE                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                       |
|   | <ul> <li>2.1 Der Gleichstrommotor</li> <li>2.2 Elektrische Geräte im Alltag</li> <li>2.3 Elektrische Antriebsysteme</li> <li>2.4 Anzeigen – Verkauf von Elektrogeräten</li> <li>2.5 In der Reparatur</li> <li>2.6 Wann werden Geräte und Anlagen geprüft?</li> <li>2.7 Thermografie</li> <li>2.8 Besichtigung und Prüfung elektrischer Anlagen</li> <li>2.9 Keine Angst</li> </ul>                                                             | 17<br>18<br>19<br>20<br>21<br>21<br>22<br>23             |
| 3 | ELEKTROENERGETIK                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                       |
|   | <ul> <li>3.1 Stromerzeugung in Deutschland</li> <li>3.2 Kraftwerke in Deutschland und in der Slowakei</li> <li>3.3 In einem Kernkraftwerk wird von Kernenergie Strom erzeugt</li> <li>3.4 Kernkraftwerke und Energie</li> <li>3.5 PRO und KONTRA</li> <li>3.6 Energiespartipps</li> <li>3.7 Weitere Tipps</li> <li>3.8 Stromverbrauch in Ihrem Haushalt</li> <li>3.9 Strom aus Körperwärme</li> <li>3.10 Gefriertruhe</li> </ul>               | 25<br>26<br>26<br>27<br>28<br>29<br>30<br>30<br>31<br>31 |
| 4 | LEISTUNGSELEKTRONIK                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                       |
|   | <ul> <li>4.1 Etwas aus der Geschichte der Stromrichtertechnik</li> <li>4.2 Umwandlung der elektrischen Energie</li> <li>4.3 Wichtige Verben und ihre Synonyme</li> <li>4.4 Leistungstransformator</li> <li>4.5 Energietransport</li> <li>4.6 Kraftwerk Ekibastus und seine Rekordzahlen</li> <li>4.7 Stromrichtereinsatz in der Energieanwendung</li> <li>4.8 Leistungselektronik in den Autos</li> <li>4.9 Glühbirnenwitze</li> </ul>         | 34<br>35<br>35<br>36<br>37<br>37<br>38<br>39             |

| 5 | TELEKOMMUNIKATIONSTECHNIK                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                             |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|   | <ul> <li>5.1 Aus der Geschichte der Telekommunikation</li> <li>5.2 Telegraph, Internet, Modem</li> <li>5.3 Digitalisierung hat alles geändert</li> <li>5.4 Über fünf Milliarden Handy-Anschlüsse</li> <li>5.5 Kostenlos telefonieren?</li> <li>5.6 Kommunikation oder Datenverarbeitung?</li> <li>5.7 Große Entdeckung</li> </ul>                                                                                                                            | 41<br>42<br>43<br>44<br>45<br>46                               |
| 6 | COMPUTERTECHNIK                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                                                             |
|   | <ul> <li>6.1 Anwendungsgebiete des Computers</li> <li>6.2 Computer-Abkürzungen</li> <li>6.3 Computer-Konfiguration</li> <li>6.4 Eingabegeräte</li> <li>6.5 Externe Speicher</li> <li>6.6 Ausgabegeräte</li> <li>6.7 Wie ist Ihre persönliche Einstellung zum Computer?</li> <li>6.8 Computer heute</li> <li>6.9 und gestern</li> <li>6.10 Geschichte der Computertechnik</li> <li>6.11 PC-Kommunikation</li> <li>6.12 Anruf beim PC-Pannen-Dienst</li> </ul> | 48<br>49<br>50<br>51<br>51<br>52<br>53<br>53<br>54<br>54<br>55 |
| 7 | COMPUTERSYSTEME                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57                                                             |
|   | <ul> <li>7.1 Optimaler PC-Schutz</li> <li>7.2 Computer – ständig unter Bedrohung</li> <li>7.3 Virenschutz</li> <li>7.4 Nach MSI wird BIOS in drei Jahren nicht mehr verwendet werden</li> <li>7.5 Mitbegründer des PC-Drucks</li> <li>7.6 Marktpreise von Laserdrucker</li> <li>7.7 Wie soll man mit CDs umgehen?</li> <li>7.8 Heuristik</li> <li>7.9 DAU Witze</li> </ul>                                                                                   | 57<br>58<br>59<br>60<br>60<br>61<br>61<br>62<br>63             |
| 8 | INDUSTRIEINFORMATIK                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                             |
|   | <ul> <li>8.1 Technische Programme</li> <li>8.2 Die "Digitale Fabrik" ist längst real</li> <li>8.3 Komponenten der Fertigungsautomatisierung</li> <li>8.4 Kurze Geschichte der Industrieroboter</li> <li>8.5 Robota – Roboter</li> <li>8.6 Energieeffizienz im Maschinenbau</li> <li>8.7 Vorteile der Automatisierung</li> <li>8.8 Roboter geht einkaufen</li> </ul>                                                                                          | 65<br>66<br>67<br>67<br>68<br>69<br>69                         |
| 9 | TON- UND BILDTECHNIK                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71                                                             |
|   | <ul> <li>9.1 Radiobasteln – der Einstieg in die Elektronik</li> <li>9.2 Bildtechnik</li> <li>9.3 Tonstudio ist ein komplexes Instrument</li> <li>9.4 Geschichte der analogen Audiotechnik</li> <li>9.5 Schnitt in der Audiobearbeitung</li> <li>9.6 100 Dezibel ist zu laut</li> </ul>                                                                                                                                                                       | 71<br>72<br>73<br>74<br>74<br>75                               |

|    | 9.7 Der Fotograf Till Siepmann vergleicht: analog oder digital?                                                                                          | 76         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | <ul><li>9.8 IPTV - das Fernsehen von morgen?</li><li>9.9 Im Fotoatelier</li></ul>                                                                        | 77<br>77   |
| 10 |                                                                                                                                                          |            |
| 10 | MIKROELEKTRONIK                                                                                                                                          | 79         |
|    | 10.1 Ein Gespräch über die Mikroelektronik                                                                                                               | 79         |
|    | 10.2 Gerd Teepe hat im Gespräch auch gesagt                                                                                                              | 80         |
|    | <ul><li>10.3 Am Anfang war Transistor</li><li>10.4 Drucksensoren, die nicht schwitzen</li></ul>                                                          | 81<br>82   |
|    | 10.5 Halbleiter                                                                                                                                          | 83         |
|    | 10.6 Die Eigenschaften der Halbleiter sind temperaturabhängig                                                                                            | 83         |
|    | 10.7 Lügen                                                                                                                                               | 84         |
| 11 | INFORMATIONSSYSTEME                                                                                                                                      | 86         |
|    | 11.1 Netzwerke                                                                                                                                           | 86         |
|    | 11.2 Vorteile eines Netzwerkes                                                                                                                           | 87         |
|    | 11.3 Browser                                                                                                                                             | 88         |
|    | 11.4 Computerspiele – eine Faszination auch für die Erwachsenen                                                                                          | 89         |
|    | 11.5 Kleines QUIZ                                                                                                                                        | 90         |
|    | 11.6 Bürotechnik – abschaltbare Steckdosenleisten sparen Geld                                                                                            | 90         |
|    | 11.7 Büroarbeit und Bürogeräte                                                                                                                           | 91         |
|    | 11.8 Anonym im Internet?                                                                                                                                 | 93         |
|    | 11.9 Informationen                                                                                                                                       | 93         |
| 12 | AUTOELEKTRONIK                                                                                                                                           | 95         |
|    | 12.1 Elektronik im Automobil                                                                                                                             | 95         |
|    | 12.2 Pressemitteilungen                                                                                                                                  | 96         |
|    | 12.3 So geht die Zeit                                                                                                                                    | 97         |
|    | 12.4 Autoelektrik in Aufgaben und Fragen                                                                                                                 | 98         |
|    | 12.5 In der Autowerkstatt                                                                                                                                | 99         |
|    | 12.6 ABS, ASR, ESP – was ist das?                                                                                                                        | 100        |
|    | <ul><li>12.7 Technik für Hybridfahrzeuge bereits in Serienproduktion</li><li>12.8 Firma Infineon auf Platz 1 bei Chips für Automobilelektronik</li></ul> | 100<br>101 |
|    | 12.9 Drei im Auto                                                                                                                                        | 101        |
| 13 | ARBEITSSICHERHEIT UND GESUNDHEITSSCHUTZ                                                                                                                  | 103        |
|    | 13.1 Der sichere Umgang mit Elektrizität rettet Leben                                                                                                    | 103        |
|    | 13.2 Strom und Wasser: eine tödliche Kombination                                                                                                         | 104        |
|    | 13.3 Was soll man (nicht) machen                                                                                                                         | 104        |
|    | 13.4 Tipps für den Privatgebrauch                                                                                                                        | 104        |
|    | 13.5 Arbeitssicherheit beim Umgang mit elektrischen Anlagen                                                                                              | 105        |
|    | 13.6 Die fünf Sicherheitsregeln                                                                                                                          | 106        |
|    | 13.7 Arbeitssicherheitstest: elektrische Unfälle                                                                                                         | 107        |
|    | 13.8 Mehr Sicherheit bei Weihnachtslichterketten                                                                                                         | 108        |
|    | 13.9 Wichtige Hinweise                                                                                                                                   | 109        |
|    | 13.10 Schmutzige Tastaturen sind unhygienisch                                                                                                            | 109<br>110 |
| 11 | 13.11 Der Lehrer erzählt den Lehrlingen über Arbeitssicherheit  LÖSUNGEN                                                                                 |            |
| 14 | _                                                                                                                                                        | 112        |
|    | DEUTSCH-SLOWAKISCHES WÖRTERBUCH                                                                                                                          | 118        |
|    | QUELLENVERZEICHNIS                                                                                                                                       | 128        |



# NA ÚVOD / VORWORT

Odborné učebné texty z nemeckého jazyka sú určené žiakom tretieho a štvrtého ročníka stredných odborných škôl elektrotechnického zamerania. Nadväzujú na všeobecnú cudzojazyčnú prípravu v prvom a druhom ročníku týchto škôl a slúžia na výučbu odborného nemeckého jazyka. Sú v súlade s požiadavkami hospodárskej praxe na absolventov v oblasti odborných cudzojazyčných kompetencií, či už ide o ich uplatnenie v priemyselných podnikoch, mobilitu v cudzojazyčnom odbornom prostredí, alebo o komunikáciu so zahraničnými partnermi. Cieľom je zdokonalenie komunikatívnej kompetencie žiakov v odbornom cudzom jazyku na úrovni, aby boli schopní aktívne používať odborný jazyk v reálnych situáciách, úzko spätých so zameraním štúdia na strednej odbornej škole.

Jednotlivé kapitoly učebných textov boli zvolené v súlade s koncepciou obsahových štandardov pre stredné odborné školy elektrotechnického zamerania. Nosnou časťou učebných textov je odborná terminológia, obsiahnutá vo východiskových autentických odborných textoch. Za textami sú zaradené rozmanité aktívne cvičenia a úlohy. Sú určené na precvičenie a upevnenie odbornej slovnej zásoby a gramatiky, rozvíjanie schopnosti odhadnúť význam lexikálnych jednotiek. Majú naučiť žiakov samostatnosti a práci s prekladovými slovníkmi. V učebných textoch sú zaradené aj zadania na riešenie problémových úloh a projektových prác, ktoré majú podporiť tvorivosť žiakov a ich schopnosť vyhľadávať informácie.

Aby bolo vyučovanie naďalej v súlade s praxou odporúčame, aby žiaci dopĺňali a aktualizovali informácie podľa aktuálnych časopisov, novín, internetových stránok a iných dôveryhodných zdrojov odborného textu v nemeckom jazyku.

Všetkým používateľom odborných textov želám veľa úspechov na ceste za vedomosťami a zručnosťami a radosť z poznania.

Autor

# AKO PRACOVAŤ S UČEBNÝMI TEXTAMI?

V odborných učebných textoch z nemeckého jazyka nájdete niekoľko typov úloh, ktorých cieľom je pomôcť vám učivo rýchlejšie pochopiť, precvičiť si ho a získať trvalé a kvalitné vedomosti z odborného nemeckého jazyka.

### TYPY ÚLOH A ZADANÍ:





# 1 GRUNDLAGEN DER ELEKTROTECHNIK UND ELEKTRONIK



# 1.1 Physikalische Größen

Unter einer physikalischen Größe versteht man das Produkt aus einem Zahlenwert und einer Einheit, z. B. 230 V für den Zahlenwert der Spannung, die mit der Einheit V beschrieben wird. Die Spannung wird mit dem Formelzeichen U dargestellt. Das international genormte Einheitensystem umfasst sieben Grundeinheiten (SI-Einheit):

- Ampere (A) f
  ür elektrische Stromst
  ärke,
- Sekunde (s) für Zeit,
- Meter (m) für Länge,
- Kelvin (K) für Temperatur,
- Kilogramm (kg) für Masse,
- Mol (mol) f
  ür Stoffmenge,
- Candela (cd) für Lichtstärke.

In der Elektrotechnik verwendet man oft noch folgende physikalische Größen:

| Formel-<br>zeichen | Physikalische Größe                   | Einheiten                  | Einheiten-<br>zeichen | In Slowakisch<br>Názov veličiny |
|--------------------|---------------------------------------|----------------------------|-----------------------|---------------------------------|
| В                  | magnetische Flussdichte,<br>Induktion | Tesla                      | Т                     | magnetická indukcia             |
| С                  | elektrische Kapazität                 | Farad                      | F                     | elektrická kapacita             |
| E                  | elektrische Feldstärke                | Volt pro Meter             | V/m                   | intenzita elektrického<br>poľa  |
| $E_V$              | Beleuchtungsstärke                    | Lux                        | lx                    | intenzita osvetlenia            |
| G                  | elektrischer Leitwert                 | Siemens                    | S                     | elektrická vodivosť             |
| Н                  | magnetische Feldstärke                | Ampere pro Meter           | A/m <sup>2</sup>      | intenzita magnetického<br>poľa  |
| I                  | Stromstärke                           | Ampere                     | А                     | elektrický prúd                 |
| $I_V$              | Lichtstärke                           | Candela                    | cd                    | svietivosť                      |
| J                  | Stromdichte                           | Ampere pro<br>Quadratmeter | A/m <sup>2</sup>      | prúdová hustota                 |
| L                  | Induktivität                          | Henry                      | Н                     | vlastná indukčnosť              |

| Formel-<br>zeichen | Physikalische Größe                                        | Einheiten                                                      | Einheiten-<br>zeichen                                | In Slowakisch<br>Názov veličiny       |
|--------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------|
| L <sub>V</sub>     | Leuchtdichte                                               | Candela pro<br>Quadratmeter                                    | cd/m²                                                | jas                                   |
| Θ                  | magnetische Durchflutung                                   | Ampere                                                         | A                                                    | magnetické napätie<br>(prietok prúdu) |
| Φ                  | magnetischer Fluss                                         | Weber                                                          | Wb                                                   | magnetický indukčný<br>tok            |
| $\Phi_{ m V}$      | Lichtstrom                                                 | Lumen                                                          | lm                                                   | svetelný tok                          |
| ρ                  | spezifischer elektrischer<br>Widerstand                    | Ohm mal Meter<br>Ohm mal Quadrat-<br>millimeter durch<br>Meter | $\frac{\Omega \cdot m}{\frac{\Omega \cdot mm^2}{m}}$ | merný odpor                           |
| P                  | Leistung                                                   | Watt, Joule pro<br>Sekunde, Newton-<br>meter pro Sekunde,      | W, J/s, Nm/s                                         | výkon                                 |
| Q                  | elektrische Ladung                                         | Coulomb                                                        | С                                                    | elektrický náboj                      |
| R                  | elektrischer Widerstand                                    | Ohm                                                            | Ω                                                    | elektrický odpor                      |
| Т                  | Periodendauer                                              | Sekunde                                                        | S                                                    | perióda                               |
| Т                  | Temperatur                                                 | Kelvin                                                         | K                                                    | teplota                               |
| U                  | elektrische Spannung,<br>elektrische<br>Potentialdifferenz | Volt                                                           | V                                                    | elektrické napätie,<br>potenciál      |
| W                  | Arbeit                                                     | Wattsekunde,<br>Joule,<br>Newtonmeter                          | Ws, J, Nm                                            | práca                                 |

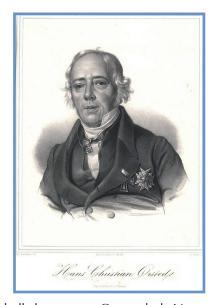
# 1.2 Grundbegriffe der Elektrotechnik

### leder **elektrische Stromkreis** besteht aus:

- Spannungsquelle bzw. Stromquelle,
- Leitung,
- Verbraucher.

In der **Spannungsquelle** (z. B. Batterie oder Steckdose) steht elektrische Energie in Form getrennter Ladung zur Verfügung. Die **Leitung** dient als Transportweg für die elektrische Energie, die als elektrischer Strom zwischen der Spannungsquelle und dem Verbraucher fließt. Im **Verbraucher** wird die durch die Spannungsquelle erzeugte Energie in eine andere Energieform umgewandelt, z. B. Wärme (Elektroofen), Lichtenergie (Lampe), Bewegung (Elektromotor). Umgangssprachlich spricht man auch davon, dass Energie "verbraucht" wird. Im Verbraucher wird dem elektrischen Strom ein Widerstand entgegengesetzt. Zwischen 2 Punkten mit unterschiedlicher elektrischer Ladung besteht eine elektrische **Spannung.** Diese Spannungsdifferenz ist bestrebt sich auszugleichen. Die elektrische Spannung ist die **Ursache**, die einen elektrischen Strom bewirkt. Bedingt durch eine Spannungsdifferenz sind die elektrischen Ladungsträger bestrebt, ihre Ladungsdifferenz auszugleichen. Dadurch kommt es zu einem Fluss von Ladungsträgern, man nennt dies elektrischen **Strom.** Der Strom ist also die **Wirkung** der elektrischen Spannung. Dem Fluss des elektrischen Stromes durch ein bestimmtes Material

wird ein mehr oder weniger großer **Widerstand** entgegengesetzt. Dieser ist beispielsweise abhängig von der Art des Materials oder der Temperatur. Die wichtigsten Größen der Elektrotechnik sind Spannung, Strom und Widerstand. Formelmäßig besteht zwischen diesen 3 Größen folgender Zusammenhang: **Strom = Spannung / Widerstand (das ohmsche Gesetz).** 


### Fragen zum Text:

- 1. Welche elektrischen Einheiten kennen Sie?
- 2. Zu welchen physikalischen Größen gehören sie?
- 3. Woraus besteht jeder elektrische Stromkreis?
- 4. Welche sind die drei wichtigsten Größen der Elektrotechnik?



## 1.3 Hans Christian Oersted, Vater der Elektrotechnik?

Die Geschichte ist ungerecht: Die Herren Volt, Ampère und Watt sind weit bekannter. Dabei war ihre wissenschaftliche Leistung auch nicht dramatisch größer. Der Name Oersted dagegen ist in der Öffentlichkeit weitgehend unbekannt. Physiker und Fachleute für Elektrotechnik aber kennen den dänischen Physiker und Chemiker Hans Christian Oersted (1777 - 1851) zumindest nach dem Namen. Denn "Oersted" (Oe) wurde zur Maßeinheit der Stärke von Magnetfeldern. Es war eine Zufallsentdeckung, die ihn berühmt machen sollte. In einer Vorlesung über Elektrizität im Jahr 1820 fiel dem Naturforscher auf, dass eine Kompassnadel neben einem stromdurchflossenen Kabel und einer Spule beim Einschalten des Stroms abgelenkt wird. Somit war klar: Es gibt einen Zusammenhang zwischen Elektrizität und Magnetismus. Ein elektrisches Feld erzeugt ein magnetisches, das wiederum das Magnetfeld der Erde überlagert und deformiert. Ihm war klar, dass dies von großer Bedeutung sein könnte. Und tatsächlich wurden aufgrund seiner Entdeckung des Elektromagnetismus



später Elektromotoren und Generatoren (Dynamos) entwickelt. Deshalb kann man Oersted als Vater der Elektrotechnik bezeichnen.

- 1. Versuchen Sie den Unterschied zwischen Erfindung und Entdeckung zu erklären!
- 2. Welche Erfindungen in der Elektrotechnik halten Sie für die wichtigsten? Diskutieren Sie darüber in kleinen Gruppen.
- 3. Bereiten Sie mit Hilfe von Fachliteratur und Internet ein Referat über einen deutschen Erfinder oder Physiker vor.



## 1.4 Reihenschaltung von Widerständen

Der **Gesamtwiderstand** R<sub>ges</sub> einer Reihenschaltung errechnet sich indem man die Einzelwiderstände addiert. Da es sich bei der Reihenschaltung um einen unverzweigten Stromkreis handelt, fließt überall der gleiche Strom. Die **Stromstärke I** ist also überall in der Schaltung **gleich groß.** Jedem Widerstand liegt eine elektrische Spannung an. Diese ist umso größer, je größer der jeweilige Widerstand ist. Die

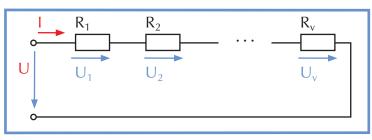



Abb. 1 Reihenschaltung von ohmschen Widerständen

Spannung  $U_n$  an einem Widerstand  $R_n$  berechnet sich nach der Formel:  $U_n = I \cdot R_n$ 

Bei der Reihenschaltung verhalten sich die Widerstände, wie die dazu gehörenden Spannungen. Die Gesamtspannung U ist gleich der Summe der Einzelspannungen.

$$R_{ges} = R_1 + R_2 + ... + R_v$$

$$U = I \cdot R_{ges} = I \cdot (R_1 + R_2 + \dots + R_v)$$

### Fragen und Aufgaben zum Text

- 1. Welche Aussagen betreffend der Spannung in einer Reihenschaltung sind richtig?
  - a) Die Spannung ist grundsätzlich an jedem Widerstand gleich groß. ( $U_1 = U_2$  usw.)
  - b) Die Summe der Einzelspannungen ist gleich der Gesamtspannung.
  - c) Besteht die Reihenschaltung aus gleich großen Widerständen, sind auch die einzelnen Spannungen gleich groß.
  - d) Je größer ein Widerstand, desto geringer ist die an ihm liegende Spannung.
- 2. Welche Aussagen betreffend des Stromes in einer Reihenschaltung sind richtig?
  - a) In einer Reihenschaltung fließt überall der gleiche Strom.
  - b) Die Gesamtstromstärke ist gleich der Summe der Einzelstromstärken.
  - c) Die angelegte Spannung hat keinen Einfluss auf die Stromstärke.
  - d) Je größer die Widerstände, umso geringer die Stromstärke



### 1.5 Gleichstromnetzwerke

Ersetzen Sie die slowakischen durch deutsche Wörter aus dem Schüttelkasten.

Zweig, Verbindungsleitungen, Verbraucher, Knotenpunkte, Reihenschaltung, Stromkreise

Elektrische Spannungsquellen wirken meist auf mehrere *spotrebiče*, die in beliebiger Weise zusammengeschaltet sein können. Man erhält verzweigte *prúdové obvody*, die man als elektrische Netzwerke bezeichnet. An Punkten, an die mehr als zwei *spojovacie vedenie* angeschlossen sind, teilen sich die Ströme auf. Man nennt diese Punkte *uzlové body* oder Knoten. Die Verbindung zweier Knoten wird als *vetva* bezeichnet. Diese Verbindung besteht aus der *sériové zapojenie* von Zweipolen und ihren Anschlussleitungen (die man auch als Zweipole auffassen kann).



## 1.6 Elektrische Kapazität

Die elektrische Kapazität gibt das Fassungsvermögen für elektrische Ladungen Q an. Das Formelzeichen der Kapazität ist C. Die Maßeinheit ist Farad, abgekürzt F. In der Elektrotechnik werden Kapazitäten durch **Kondensatoren** erzeugt. Die Kapazität eines Kondensators ist von dessen Aufbau abhängig. Die Kapazität C beeinflussen folgende Größen:

- Fläche der Platten A. C ~ A
- Abstände der Platten d. C ~ 1/d
- Elektrische Feldkonstante  $\epsilon_0$ . **C** ~  $\epsilon_0$  Die Elektrische Feldkonstante gilt dann, wenn sich zwischen den Platten ein Vakuum befindet.  $\epsilon_r = 8,86 \cdot 10^{-12} \text{ As/Vm}$
- Dielektrizitätszahl  $\epsilon_r$ .  $C \sim \epsilon_r$ Die Dielektrizitätszahl gibt an, um wie viel sich die Kapazität des Kondensators durch die Verwendung eines bestimmten Materials gegenüber dem Vakuum erhöht.

| Aufgaben zum Text:                                                      |
|-------------------------------------------------------------------------|
| Ergänzen Sie die folgenden Aussagen zum Kondensator!                    |
| a) Die Einheit der ist F.                                               |
| b) Eine Vergrößerung des Plattenabstandes führt zu einer der Kapazität. |
| c) Eine der Plattenflächen führt zu einer Verkleinerung der Kapazität.  |



# 1.7 Wichtige Fachbegriffe

### 1. Suchen Sie Synonyme zu den Verben aus. Was passt zusammen?

| 1. | leiten  | A. | wirken   |
|----|---------|----|----------|
| 2. | gehören | B. | betragen |
| 3. | ergeben | C. | steigen  |
| 4. | erhöhen | D. | bemühen  |