Programujeme v Pythone 3
učebnica informatiky pre stredné školy
Autori © Mgr. Peter Kučera, Mgr. Jaroslav Výbošťok
Design © Mgr. Peter Kučera
Jazyková korektúra: Mgr. Katarína Kučerová
Prvé vydanie, 2018
Verzia číslo: 20181216
Vydavateľ: Mgr. Peter Kučera
Ukážka z e-knihy
Upozorňujeme, že elektronická kniha je dielom chráneným podľa autorského zákona a je určená len pre osobnú potrebu kupujúceho. Kniha ako celok ani žiadna jej časť nesmie byť voľne šírená na internete, ani nijako ďalej zverejňovaná. V prípade ďalšieho šírenia neoprávnene zasiahnete do autorského práva s dôsledkami podľa platného autorského zákona a trestného zákonníka.
Veľmi si vážime, že e-knihu ďalej nešírite. Len vďaka vašim nákupom dostanú autori, vydavatelia a kníhkupci odmenu za svoju prácu. Ďakujeme, že tak prispievate k vzniku ďalších skvelých kníh.
učebnicu a ďalšie materiály si môžete zakúpiť aj priamo na stránkach autora: http://www.programujemevpythone.sk/ a https://www.facebook.com/programujemevpythone
ISBN 978-80-570-0502-5 (pdf)
ISBN 978-80-570-0503-2 (epub)
ISBN 978-80-570-0504-9 (mobi)
Z NAŠEJ PONUKY

www.programujemevpythone.sk
www.facebook.com/programujemevpythone
Obsah
1 Zoznam zoznamov (dvojrozmerné pole)
1.1 Piškvorky
1.2 Diamantové bludisko
3.1 Kreslenie korytnačkou
Príkazy (metódy) pre korytnačku:
Používanie korytnačej grafiky v tkinter
3.2 Pracujeme s viacerými korytnačkami
4.1 Rekurzia
4.2 Pravá rekurzia a fraktály
4.3 Rekurzia a funkcie s návratovou hodnotou, rekurzia bez grafiky
5.1 Vytvorenie triedy a jej používanie
Trieda Značka
Trieda Vlajka
5.2 Vytvorenie modulu s triedou
5.3 Kompozícia tried
5.4 Dedičnosť objektov
Vytvorenie triedy obrázok, ťahanie obrázku
5.5 Využívanie objektov v programoch
Húsenica
6.1 Vytváranie grafu
6.2 Reprezentácie grafu
Matica susedností
Asociatívne pole asociatívnych polí susedností
6.3 Prehľadávanie grafu
Prehľadávanie do hĺbky
Prehľadávanie do šírky
Hľadanie najkratšej cesty
Hľadanie najkratšej cesty v ohodnotenom grafe (Dijkstrov algoritmus)
7 Ďalšie možnosti jazyka Python
7.1 Ternárny operátor
7.2 Zjednodušené vytváranie zoznamov
7.3 Inicializované parametre funkcií
7.4 Výnimky
Úvod
Učebnica Programujeme v Pythone sa niesla v modrom dizajne a jej druhý diel v zelenom. Ešte chýbala tretia – červená zložka, aby bolo farebné spektrum RGB kompletné. Tretí diel, ktorého úvod práve čítate, sa nesie v červených farbách. Venuje sa témam, ktoré už prevyšujú cieľové požiadavky na maturitné skúšky. Učebnica je vhodná nielen pre všetkých študentov, ktorí si programovanie obľúbili a chcú sa mú hlbšie venovať aj v budúcnosti, ale aj pre tých, ktorí chcú byť vybavení silným nástrojom na riešenie problémov, ktoré dnešná digitálna doba prináša.
Aj obsah tohto dielu sme starostlivo namiešali a využili sme pri tom naše dlhoročné skúsenosti z vyučovania programovania na strednej škole.
V učebnici nájdete množstvo praktických a riešených príkladov, úlohy na precvičenie, ale aj otázky, ktoré vás majú nabádať na premýšľanie, objavovanie súvislostí, diskusiu v skupine, experimentovanie, ale aj hľadanie chýb a intuitívne hľadanie optimálneho riešenia.
Naučíte sa vytvárať a používať zložitejšie štruktúry, programovať algoritmy s využitím rekurzie, ktorá je veľmi silným, ale elegantným nástrojom, a tiež si môžete otestovať svoje hranice pri používaní a tvorení grafových algoritmov. Veríme, že vás zaujme aj objektové programovanie.
Ak ste sa k tretiemu dielu dostali len náhodou a chýbajú vám základy, nebojte sa rekurzívne vrátiť k predchádzajúcej úrovni. Nekonečného zacyklenia sa obávať nemusíte, 1. diel Programujeme v Pythone rieši aj triviálne prípady :)
Pri programovaní s touto učebnicou vám prajeme veľa príjemných chvíľ, zábavy, úspechov, ale aj zopár chybových hlášok, pri ktorých sa trochu potrápite, no hlavne sa naučíte ešte viac ...
autori

Textové súbory a obrázky k úlohám si môžete stiahnuť z:
...
1 Zoznam zoznamov (dvojrozmerné pole)
1.1 Piškvorky
Nasledujúci program je prípravou na hru Piškvorky. Program vykreslí mriežku. Kliknutím ľavého tlačidla myši sa na mieste kliknutia nakreslí krúžok alebo krížik, podľa toho, ktorý hráč je na ťahu.

p1-01.py
import tkinter
canvas = tkinter.Canvas(width=400, height=400)
canvas.pack()
pocet_policok_x, pocet_policok_y = 10, 8
v = 30 #veľkost políčka
mriezka_x, mriezka_y = 10, 10 # x a y začiatku mriežky
vypln = 1
def kresli_mriezku(px, py, v, mx, my):
for stlpec in range(px):
for riadok in range(py):
canvas.create_rectangle(stlpec*v + mx, riadok*v + my,
(stlpec+1)*v + mx, (riadok+1)*v + my)
def kresli(stlpec, riadok, vypln):
if vypln == 1:
canvas.create_oval(stlpec*v + mriezka_x +1, riadok*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -2, (riadok+1)*v+mriezka_y-2,
fill = 'red')
if vypln == 2:
canvas.create_line(stlpec*v + mriezka_x +1, riadok*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -1, (riadok+1)*v+mriezka_y+1,
fill = 'blue', width = 2)
canvas.create_line(stlpec*v + mriezka_x +1, (riadok+1)*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -1, riadok*v + mriezka_y+1,
fill = 'blue', width = 2)
def pozicia(x, y):
stlpec = (x - mriezka_x) // v
riadok = (y - mriezka_y) // v
return stlpec, riadok
def oznac(sur):
global vypln
vypln = 3 - vypln
stlpec, riadok = pozicia(sur.x, sur.y)
kresli(stlpec, riadok, vypln)
kresli_mriezku(pocet_policok_x, pocet_policok_y, v, mriezka_x, mriezka_y)
canvas.bind('<Button-1>', oznac)
Otázky:
Program si zatiaľ v žiadnej štruktúre nepamätá naklikané krížiky a krúžky. Informácie o existujúcich útvaroch by sme vedeli zistiť pomocou vlastností vytvorených grafických útvarov v canvase (s týmito vlastnosťami sme pracovali v 9. kapitole 2. dielu učebnice). Bolo by to ale zbytočne komplikované. Pomohlo by nám vhodné vytvorenie značiek k útvarom (tags).
My si ukážeme iný spôsob. Naklikané krížiky a krúžky si budeme pamätať v zozname. Každému (aj prázdnemu) políčku mriežky bude v zozname zodpovedať jedno číslo. Napríklad: prázdne políčko bude reprezentované číslom 0, krížik číslom 1 a krúžok číslom 2. Pre mriežku s rozmermi 10 stĺpcov a 8 riadkov by nám postačoval 80-prvkový zoznam. Ako zistíme, čo je umiestnené v treťom stĺpci a druhom riadku? Zakaždým by sme si museli počítať index prvku v zozname. Napríklad výpočtom (riadok-1) * pocet_policok_x + stlpec - 1.
>>> riadok = 2
>>> stlpec = 3
>>> (riadok-1) * pocet_policok_x + stlpec - 1
12
>>> riadok = 1
>>> stlpec = 1
>>> (riadok-1) * pocet_policok_x + stlpec - 1
0
>>> riadok = 8
>>> stlpec = 10
>>> (riadok-1) * pocet_policok_x + stlpec - 1
79
>>> riadok = 3
>>> stlpec = 1
>>> (riadok-1) * pocet_policok_x + stlpec - 1
20
Aby sa nám pracovalo s indexmi políčok jednoduchšie, budeme si informácie pamätať inak. Pre každý riadok mriežky vytvoríme jeden zoznam - v našom prípade 8 zoznamov. Pridaním týchto zoznamov do jedného zoznamu získame zoznam zoznamov. Jedným prvkom tohto zoznamu bude práve zoznam čísel jedného riadku. Jeden riadok je zoznam 10 čísel.
p1-01a.py
plocha = []
for i in range(8):
plocha.append([0]*10)
print(plocha)
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
Chceme zmeniť prázdne políčko v druhom riadku a treťom stĺpci v zozname plocha na krížik. Najprv uvedieme index pre daný riadok (čiže 1, lebo index 0 má prvý riadok, index 1 druhý riadok) a v ňom uvedieme index pre stĺpec (čiže 2, lebo prvý stĺpec má v zozname index 0). Zmeníme teda hodnotu pre plocha[1][2] a priradíme tam hodnotu 2.
>>> plocha[1][2] = 2
>>> plocha
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
>>>
Ešte to zovšeobecníme podľa rozmerov plochy, ktoré máme nastavené v premenných, a doplníme to do programu pred definíciu funkcie kresli_mriezku:
#p1-01a-2.py
plocha = []
for i in range(pocet_policok_y):
plocha.append([0]*pocet_policok_x)
print(plocha)
Teraz už môžeme doplniť funkciu oznac() o kontrolu, či je políčko prázdne. Iba ak je prázdne, zmeníme políčku hodnotu, vykreslíme obrázok a zmeníme typ výplne.
def oznac(sur): #p1-01b.py
global vypln
stlpec, riadok = pozicia(sur.x, sur.y)
if plocha[riadok][stlpec] == 0:
vypln = 3 - vypln
plocha[riadok][stlpec] = vypln
kresli(stlpec, riadok, vypln)
Otázky:
Keď si pamätáme naklikané útvary, môžeme rozohratú hru uložiť do textového súboru. Doplníme do programu tlačidlo Save, ktoré hru uloží. Do prvého riadku uložíme veľkosť hracej plochy (v počte políčok).
def save(): #p1-01c.py
subor = open('piskvorky.txt', 'w')
subor.write(str(pocet_policok_x)+' '+str(pocet_policok_y)+'\n')
for riadok in plocha:
zapisat = ''
for prvok in riadok:
zapisat = zapisat + str(prvok) + ' '
zapisat = zapisat[:-1]+'\n'
subor.write(zapisat)
subor.close()
button1 = tkinter.Button(text='Save', command=save)
button1.pack()
Ukážka uloženého súboru pre takto naklikanú hraciu plochu:

10 8
2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1
1 0 0 0 0 0 0 2 1 2
Ešte doplníme do programu tlačidlo Load, ktoré načíta do zoznamu textový súbor, vykreslí mriežku a útvary a zmení rozmery plochy podľa informácií v súbore. Keďže po prečítaní riadku a použití metódy split() dostaneme z čísel v riadku zoznam reťazcov, a tie potrebujeme po jednotlivých prvkoch premeniť funkciou int() na čísla, vyrobíme si funkciu int_zoznam(). Funkcia int_zoznam()nám všetky prvky zoznamu zmení na čísla a na výstupe vráti zoznam čísel.
def int_zoznam(zoznam): #p1-01d.py
vysledok = []
for prvok in zoznam:
vysledok.append(int(prvok))
return vysledok
def load(): #p1-01e.py
global pocet_policok_x, pocet_policok_y, plocha
subor = open('piskvorky.txt', 'r')
info = subor.readline()
info = info.strip()
rozmery = info.split()
pocet_policok_x, pocet_policok_y = int_zoznam(rozmery)
plocha = []
for riadok in subor:
riadok = riadok.strip()
riadok_zoznam = riadok.split()
riadok_zoznam = int_zoznam(riadok_zoznam)
plocha.append(riadok_zoznam)
canvas.delete('all')
kresli_mriezku(pocet_policok_x, pocet_policok_y, v, mriezka_x, mriezka_y)
kresli_plochu()
button2 = tkinter.Button(text='Load', command=load)
button2.pack()
Funkcia kresli_plochu(), ktorú voláme po prečítaní súboru, prejde celým zoznamom plocha a postupne vykreslí jednotlivé útvary volaním funkcie kresli().
def kresli_plochu(): #p1-01f.py
for r in range(pocet_policok_y):
for s in range(pocet_policok_x):
kresli(s, r, plocha[r][s])
Zatiaľ máme spravený tento program:
p1-01g.py
import tkinter
canvas = tkinter.Canvas(width=400, height=400)
canvas.pack()
pocet_policok_x, pocet_policok_y = 10, 8
v = 30 #veľkost políčka
mriezka_x, mriezka_y = 10, 10 # x a y začiatku mriežky
vypln = 1
plocha = []
for i in range(pocet_policok_y):
plocha.append([0]*pocet_policok_x)
def kresli_mriezku(px, py, v, mx, my):
for stlpec in range(px):
for riadok in range(py):
canvas.create_rectangle(stlpec*v + mx, riadok*v + my,
(stlpec+1)*v + mx, (riadok+1)*v + my)
def kresli(stlpec, riadok, vypln):
if vypln == 1:
canvas.create_oval(stlpec*v + mriezka_x +1, riadok*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -2, (riadok+1)*v+mriezka_y-2,
fill = 'red')
if vypln == 2:
canvas.create_line(stlpec*v + mriezka_x +1, riadok*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -1, (riadok+1)*v+mriezka_y+1,
fill = 'blue', width = 2)
canvas.create_line(stlpec*v + mriezka_x +1, (riadok+1)*v+mriezka_y+1,
(stlpec+1)*v+mriezka_x -1, riadok*v + mriezka_y+1,
fill = 'blue', width = 2)
def pozicia(x, y):
stlpec = (x - mriezka_x) // v
riadok = (y - mriezka_y) // v
return stlpec, riadok
def oznac(sur):
global vypln
stlpec, riadok = pozicia(sur.x, sur.y)
if plocha[riadok][stlpec] == 0:
vypln = 3 - vypln
plocha[riadok][stlpec] = vypln
kresli(stlpec, riadok, vypln)
def save():
subor = open('piskvorky.txt', 'w')
subor.write(str(pocet_policok_x)+' '+str(pocet_policok_y)+'\n')
for riadok in plocha:
zapisat = ''
for prvok in riadok:
zapisat = zapisat + str(prvok) + ' '
zapisat = zapisat[:-1]+'\n'
subor.write(zapisat)
subor.close()
def int_zoznam(zoznam):
vysledok = []
for prvok in zoznam:
vysledok.append(int(prvok))
return vysledok
def kresli_plochu():
for r in range(pocet_policok_y):
for s in range(pocet_policok_x):
kresli(s, r, plocha[r][s])
def load():
global pocet_policok_x, pocet_policok_y, plocha
subor = open('piskvorky.txt', 'r')
info = subor.readline()
info = info.strip()
rozmery = info.split()
pocet_policok_x, pocet_policok_y = int_zoznam(rozmery)
plocha = []
for riadok in subor:
riadok = riadok.strip()
riadok_zoznam = riadok.split()
riadok_zoznam = int_zoznam(riadok_zoznam)
plocha.append(riadok_zoznam)
subor.close()
canvas.delete('all')
kresli_mriezku(pocet_policok_x, pocet_policok_y, v, mriezka_x, mriezka_y)
kresli_plochu()
button1 = tkinter.Button(text='Save', command=save)
button1.pack()
button2 = tkinter.Button(text='Load', command=load)
button2.pack()
kresli_mriezku(pocet_policok_x, pocet_policok_y, v, mriezka_x, mriezka_y)
canvas.bind('<Button-1>', oznac)
Otázky:

Úlohy:

Otázky:
def A():
global plocha
plocha = plocha[::-1]
def B():
for r in range(len(plocha)):
plocha[r] = plocha[r][::-1]
Vráťme sa k vytvoreniu zoznamu zoznamov. V programe p1-01a.py sme ho vytvárali pomocou for cyklu.
p1-01a.py
plocha = []
for i in range(8):
plocha.append([0]*10)
print(plocha)
Môžeme zoznam zoznamov vytvoriť aj jednoduchšie? Pozrime sa na takéto riešenie:
>>> plocha = [[0] * 3] * 5
>>> plocha
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> plocha[0][1] = 2
>>> plocha
[[0, 2, 0], [0, 2, 0], [0, 2, 0], [0, 2, 0], [0, 2, 0]]
>>>
Z pokusu v príkazovom riadku vidíme, že zoznam zoznamov sa na prvý pohľad vytvoril aj týmto spôsobom správne. Keď však zmeníme hodnotu jedného prvku niektorého zoznamu, tento prvok sa naraz zmení vo všetkých zoznamoch v zozname. Prečo to tak je? Zápis [0] * 3 vytvoril jeden trojprvkový zoznam s nulami. Následne zápisom [[0] * 3] * 5 sa vytvoril päťprvkový zoznam. Problémom však je, že ten obsahuje päťkrát referenciu (odkaz na miesto v pamäti), kde sa nachádza pôvodne vytvorený trojprvkový zoznam. Všetkých päť prvkov teda referuje (odkazuje) na jeden a ten istý zoznam troch núl. Keď v ktoromkoľvek z piatich zoznamov zmeníme jeden prvok, stále meníme ten istý trojprvkový zoznam. Najlepšie to uvidíme vo vizualizácii pomocou www.pythontutor.com

Rovnako nevhodné je aj toto riešenie:
Príkazovník

