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using Monte -Carlo simulations involving 
adaptive administration of the Physical Self-
-Description Questionnaire – an instrument 
widely used to assess physical self -concept in 
the fi eld of sport and exercise psychology.

CAT_mont.indd   1 17/12/2018   10:01



Computerized Adaptive Testing in Kinanthropology

Monte Carlo Simulations Using the Phisical Self-Description Questionnaire

Martin Komarc

Reviewers:

RNDr. Patrícia Martinková, Ph.D.

prof. RNDr. Jan Hendl, CSc.

Published by Charles University

Karolinum Press

Cover design Jan Šerých

Set by Stará škola (staraskola.net)

First Edition

© Charles University, 2018

© Martin Komarc, 2018

ISBN 978-80-246-3918-5

ISBN 978-80-246-3984-0 (pdf)



Charles University

Karolinum Press 2019

www.karolinum.cz

ebooks@karolinum.cz





Acknowledgements 9

1. Brief Introduction to Measurement (in Kinanthropology) 11

2. Historical Paths to Modern Test Theory 14

3. Groundwork for Item Response Theory 17

4. Item Response Theory (IRT) 19
4.1 Introduction 19
4.2 Unidimensional dichotomous IRT models 20
4.3 Unidimensional polytomous IRT models 24
4.4 Assumptions required for unidimensional IRT models 30
4.5 Parameter estimation in IRT models 32

4.5.1 Latent trait (θ) estimation 33
 4.5.2 Item parameters estimation 37
4.6 Information and standard error of the θ estimates 38

5. Computerized Adaptive Testing (CAT): Historical 
and Conceptual Origins 44

6. Testing Algorithms in Unidimensional IRT-based CAT 51
6.1 Starting 53
6.2 Continuing 54
6.3 Stopping 59
6.4 Practical issues related to item selection in CAT 59

6.4.1 Item pool 60
6.4.2 Content balancing 61
6.4.3 Exposure control 62

Contents



 6.5 Evaluation of item selection and trait estimation methods  
 used in computerized adaptive testing algorithms 63

 7.	 Empirical	Part	–	Problem	Statement 66

 8.	 Aims	and	Hypotheses 68

 9.	 Methods  70
 9.1 Item pool, IRT model used for item calibration, dimensionality analysis 72
  9.1.1 General description of the item pool 72
  9.1.2 Item calibration 72
  9.1.3 Dimensionality analysis 72
	 9.2	 CAT	simulation	design	and	specifications	 73
	 	 9.2.1	 Step	1.	Simulate	latent	trait	values	(true	𝜃)	 73
  9.2.2 Step 2. Supply item parameters for the intended item pool 73
  9.2.3 Step 3. Set CAT algorithm options 73
  9.2.4 Step 4. Simulate CAT administration 75
 9.3 Analysis of simulation results 76

10. Results  78
 10.1 Dimensionality 78
 10.2 Number of administered items in CAT simulation 79
 10.3 Bias of the CAT latent trait estimates 87
 10.4 Correlations 91

11. Discussion  95

12. Conclusions 102

Summary  103

References  105

Appendices  117
 Appendix A – IRT parameters (a – discrimination and b’s – thresholds)  

 for the Physical Self-Description Questionnaire items  
 (source: Flatcher & Hattie, 2004) 117

 Appendix B – R code used for the simulation of the PSDQ CAT 122
 Appendix C – Test information and corresponding standard error  

 for the Physical Self-Description Questionnaire item pool 125



 Appendix D – Example of R code used to create Figure 1 126
 Appendix E – Online application for adaptive testing using  

 the Physical Self-Description Questionnaire 127

List of Tables  130
List of Figures  131





Acknowledgements

I would like to thank the people who provided me with their unrequited 
support during my Ph.D. doctoral studies and likewise for their support 
during preparation of the present monograph. 

First and foremost, I must acknowledge my former supervisor Petr 
Blahuš, THE PERSON, who guided me in the correct direction at the very 
beginning	of	my	career	when	I	first	set	out	on	this	journey.	Petr	also	played	
an instrumental role in helping mold and further shape my critical reason-
ing skills. I will always remember all of what you did for me Petr – may you 
forever rest in peace!

I also would like to thank my doctoral thesis supervisor, Jan Štochl, for 
the opportunity to work on the interesting topic of Computerized Adaptive 
Testing and also for sharing his tremendous expertise with me. Besides 
many other things, Jan also gave me an opportunity to spend an inspiring 
time working and learning at the York Centre for Complex System Analysis, 
for which I am very grateful. 

A BIG THANK YOU belongs to Lawrence M. Scheier from the LARS Re-
search Institute, USA for his tireless support and encouragement so that 
I	could	finish	this	work.	Larry	your	contribution	to	this	work,	which	took	
the form of motivating me and editing my English composition and gram-
mar, was indeed crucial for its completion. 

My further thanks go to Knut A. Hagtvet, whose excellent classes in gen-
eralizability	theory	and	structural	equation	modeling	significantly	shaped	
my understanding of many fundamental psychometric concepts. Many 
thanks to Knut also for the possibility to arrange a research stay at the 
University	of	Oslo,	Department	of	Psychology,	which	I	thoroughly	enjoyed.

Many other people deserve my acknowledgment for their contribution 
to	my	professional	growth.	Namely,	I	would	like	to	thank	Ondřej	Pecha	and	
Ladislav	Čepička	for	their	friendly	and	skillful	guidance	during	my	Ph.D.	
studies.



10

Finally I must express my deepest and warmest gratitude to my family 
and to my dear Ivana for their endless love, unfailing support, and continu-
ous encouragement throughout my years of graduate study. Words cannot 
really convey the deep appreciation and heartfelt sincerity I have for your 
support. Thank you.

This	study	was	supported	by	the	following	projects	and	grants:	UNCE	32	
PRVOUK 39, PROGRES Q19, SVV 2016-260346, SVV 2017-260446, GAUK 
962214 and GAUK 110217.



1. Brief introduction  

to measurement  

(in Kinanthropology)

Mankind has always ventured to count and assign numbers to things. As 
part of organizing the world, we want to know “how much is out there and 
in what quantities do things exist?” Even counting how much fruit a tree 
bears, or ripened berries that fall to the ground involves developing an as-
signment scheme that utilizes collecting, counting, sorting, assigning and 
categorizing. It seems to be an integral part of our existence to assign num-
bers to observations according to some established set of rules; rules and 
procedures that are in today’s world termed ‘measurement’ (Wood, 2006). 
The intent of measurement is to obtain information about particular char-
acteristics,	qualities	or	attributes	of	an	object,	and	this	process	very	much	
lies	at	the	heart	of	every	scientific	inquiry.	The	processes	and	procedures	
that underlie measurement, and more formally testing generally involves 
assessing	well-known	attributes	of	objects	–	directly	observable	physical	
quantities such as time, weight, length as well as other non-physical at-
tributes (e.g., how many numbers a person can memorize). 

While	our	preoccupation	with	counting	and	measurement	fulfills	some	
aspect of our need to know about the observable world we inhabit, it is 
very often the case in the social and behavioral sciences that the attributes 
of interest we wish to measure are not directly observable. Many attrib-
utes, like a person’s intelligence, test anxiety, well-being, motor abilities, 
are not observable but must be inferred. In essence, we can’t touch or see 
these attributes, but rather infer them from observed patterns or sequenc-
es in behavior. These attributes are referred to as theoretical concepts 
(Bentler, 1978; Blahuš, 1985), given their abstract and ephemeral nature 
outside of the immediate and observable world. Given the unobservable 
nature	of	theoretical	concepts	researchers	use	specific,	concrete	and	par-
tial counterparts, so called empirical (observed) indicators, that are pre-
sumed to represent the abstract and generic theoretical concept of interest.
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Unfortunately,	by	their	very	nature,	empirical	indicators	are	flawed	and	
error	prone.	This	is	partly	because	they	reflect	the	real	world,	which	is	
“interpreted through our senses” and thus can never be known precise-
ly	(Popper,	2002)	.	Observed	indicators	are	also	flawed	given	the	uncer-
tainty of measurement, which can never be perfectly precise. To provide 
a shared or consensual understanding of theoretical concepts they are 
linked	to	observable	indicators	by	an	operational	definition	(Bridgman,	
1959)	;	one	that	specifies	variables	defining	the	latent	construct	of	interest.	
For example, researchers studying Kinanthropology might be interested in 
measuring “attitudes towards school physical education” with the goal of 
using knowledge of these attitudes to promote greater involvement by stu-
dents in sports. As a result, a researcher might develop several true/false 
questionnaire	items,	that	are	presumed	to	reflect	attitudes	towards	school	
physical	education	(e.g.,	“If	for	any	reason	a	few	subject	areas	have	to	be	
dropped from the school program, physical education should be one of the 
subjects	dropped”)	.	The	skillfully	chosen	function	of	empirical	indicators,	
questionnaire items in this case (e.g., sum of the total true responses), is 
then referred to as a ‘test score’ in the psychometric literature and is sup-
posed	to	represent	a	quantifiable	measure	of	the	individual’s	“attitudes	
towards school physical education”.

The process of concept formation, which according to Blahuš (1996) 
utilizes a form of so-called “weak associative measurement,” raises several 
interesting questions. A researcher or a practitioner might wonder, for ex-
ample, whether based on the administration of a set of questionnaire items 
it is reasonable to create a single general score that accurately assesses 
a person’s “attitudes towards the school physical education”. Additional 
questions that arise from this line of reasoning include: Are all the items 
equally good measures of the attitudes in question or are some items bet-
ter than others? In the case of a single general score, how accurate is the 
resulting composite as a measure of attitudes? The last concern can also 
be	expressed	in	terms	of	sufficiency,	for	instance,	whether	20	items	pro-
vide	sufficient	information	to	determine	an	individual’s	attitudes	toward	
physical	education.	Furthermore,	if	20	items	are	deemed	insufficient,	how	
many more items should be used? If large numbers of items must be used, 
we can pose the question whether two tests can be constructed as ‘parallel 
forms’, each form containing different items (McDonald, 1999)? 

Interpreting the test scores (numbers produced by each of the re-
search participants, students, or patients when they took a test) without 
answering the questions posed above may, according to Wood (2006), lead 
to incorrect conclusions regarding research hypothesis and/or practical 
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recommendations (to clients/patients). These and similar questions are 
closely	related	to	the	two	major	problems	of	measurement	and	testing	
in behavioral and social sciences: reliability and validity of a test score. 
Validity “refers to the appropriateness, meaningfulness and usefulness of 
the	specific	inferences	made	from	test	scores”	(Wainer,	2000,	p.	16)	.	Reli-
ability, on the other hand, refers to the degree to which a test score, as 
a representation of the attribute or characteristic being assessed, is free 
from error (i.e. the accuracy of the measure).

The collection of techniques and statistical methods for evaluating the 
development and uses of a test is referred to as test theory in the literature 
(Embretson & Reise, 2000; McDonald, 1999; Zhu, 2006). The next section 
briefly	mentions	several	of	the	key	developments	in	the	history	of	test	the-
ory, many of which still have practical implications in the behavioral and 
social	sciences	including	the	field	of	Kinanthropology.



2. Historical Paths  

to Modern Test Theory

The history of measurement and testing in the behavioral and social sci-
ences	reflects	several	conceptual	frameworks	(classical	test	theory	–	CTT,	
item response theory – IRT) and empirical approaches (e.g., split-half reli-
ability, internal consistency, factor analysis, …) used to formalize and rigor-
ously test validity and reliability, two important psychometric benchmarks. 
Impetus for these approaches was mainly motivated by psychological re-
search. Historically, psychologists tried to incorporate statistical methods 
that	would	assist	them	in	solving	their	specific	research	questions	(i.e.,	
are two constructs related?). In the long run, these efforts combined with 
improved research designs provided impetus for the mathematical treat-
ment of these problems on a more sophisticated basis (McDonald, 1999). 
Without	the	demand	for	statistical	treatment	of	these	important	scientific	
questions, the development of statistical methods including correlation, 
linear regression analysis, and even factor analysis might certainly have 
been delayed (Blahuš, 2010).

In 1904 Charles Spearman, a student of William Wundt, published two 
seminal articles in the American Journal of Psychology, both of which pro-
vided a fundamental basis for the creation of psychometric theory. In the 
first	of	these	articles	titled	“‘General	Intelligence’	Objectively	Determined	
and Measured,” Spearman (1904a) demonstrated that cognitive perfor-
mance is generated by a single, unitary quality – or what was then termed 
‘general intelligence’. Spearman proposed that a general factor of intelli-
gence, which he labeled ‘g’, could be obtained from using a new statistical 
technique – factor analysis. Using factor analysis, a data summarization 
technique, Spearman showed that scores on all mental tests are positively 
correlated, and this positive association provided empirical evidence of 
a credible underlying “trait” of intelligence. 

In a second article (The Proof and Measurement of Association be-
tween Two Things) Spearman (1904b) introduced the psychometric con-
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cept of reliability, providing a mathematical formula for estimating a test’s 
precision or otherwise its accuracy in assessing a theoretical attribute 
(McDonald, 1999). Spearman argued that the observed test score is a com-
posite of two independent components; the “true value” of the theoretical 
attribute/concept	and	a	second	component	reflecting	measurement	error.	
By introducing both factor analysis and the concept of reliability, Spear-
man is generally considered as a father of CTT, a conceptual cornerstone of 
psychological testing and a theory that has stood the test of time through 
the 21st century.

The	primary	entity	within	CTT	is	a	fixed	test	or	some	type	of	assess-
ment protocol (e.g., questionnaire, test battery, etc.), usually consisting of 
several empirical indicators (e.g., survey or questionnaire items), which 
collectively provide a test score (e.g., total number of true responses that 
are correctly answered as “true” or false responses that are correctly an-
swered as “false”). One of the most important features of empirical indica-
tors	in	a	test,	what	is	called	item	difficulty	is	conceptualized	within	CTT	as	
the probability, that a randomly selected examinee from the population 
of interest provides the keyed response (McDonald, 1999). For true/false 
(pass/fail) scored indicators/items, the relative frequency of true respons-
es	(passes)		in	a	sufficiently	large	random	sample	from	the	population,	is	
used	as	the	estimate	for	an	item	difficulty.

Although CTT has been popular in test construction, particularly in 
the social and behavioral sciences, the theory contains several shortcom-
ings (Gulliksen, 1950; Lord & Novick, 1968). One drawback of CTT is that 
test	score	reliability	and	item	difficulties	are	population	dependent.	For	
example the relative frequency of true responses (passes) for a question-
naire item assessing frequency of hallucination (e.g., “I often experience 
hallucinations”) would be much lower in the general population compared 
to a clinical sample of diagnosed schizophrenics (McDonald, 1999). Reli-
ability of a test score, as another example, is higher in a heterogeneous 
population compared to homogenous population when using the same test 
(Thissen, 2000). This population/sample dependence that exist in CTT re-
quires that new validity and reliability information is collected with each 
new	population	intended	for	a	specific	test’s	use	(Wood,	2006)	.	Emphasis	
of CTT on a test as a whole has shown to also be a drawback, since char-
acteristics of the empirical indicators in a test (e.g., questionnaire items) 
are	valid	and	interpretable	only	within	the	specified	context	for	the	par-
ticular	test.	Item	difficulty,	for	example,	cannot	be	considered	outside	of	
the particular test in which the items were administered – that is items 
are inseparable from the test (Verschoor, 2007). Moreover by using differ-
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ent scales for the item’s and examinee’s characteristics (e.g., probabilities 
for	item	difficulties	vs.	sum	of	the	passes	for	examinees)		respectively,	CTT	
does not provide a means to make rigorous and methodologically sound 
conclusions about an individual’s performance on the particular item. CTT 
also assumes that measurement error is distributed uniformly across the 
whole range of a test score, which is often unrealistic in practical appli-
cations of measurement in social and behavioral sciences (Embretson & 
Reise, 2000; Zhu, 2006).



3. Groundwork for  

Item Response Theory

The concerns outlined above with CTT sparked development of modern 
test theory, which according to Hambelton, van der Linden, and Wells 
(2010)		consisted	of	a	series	of	refinements	in	the	underlying	statistical	
proofs introduced by Lord’s (1952, 1953) seminal publications. In these 
works, Lord introduced a theory to account for a test score which linked 
item responses to the underlying latent trait measured by the test. Work 
by the Danish mathematician George Rasch (1960) was also considered in-
strumental in the development of the modern test theory, and led to many 
advances in measurement theory and practice. It was, however, Lord and 
Novick’s “Statistical theories of mental test scores” (1968), which is re-
garded by many as the real turning point in the transition from classic to 
modern test theory, the latter which is most commonly referred to as item 
response theory (IRT) today (Embretson & Reise, 2000; van der Linden 
& Glas, 2010; Wainer et al., 2000). Lord and Novick’s (1968) book intro-
duced, among other things, the work of Allan Birnbaum, who provided the 
statistical foundations for IRT based on his seminal work with the likeli-
hood principle (Birnbaum, 1968). 

Development of IRT was perhaps slowed by its computational com-
plexity, which has been greatly facilitated by the increased computational 
capacity and speed of modern computers. The advent of powerful and 
relatively inexpensive computers introduced in the 1980s paved the way 
for	IRT	to	be	“the	most	dominant	theory	for	test	construction	in	all	major	
testing organizations or agencies such as the Educational Testing Service 
(ETS)		and	American	College	Testing	(ACT)	”	(Zhu,	2006,	p.	53)	.	The	first	
systematic treatment of IRT in Kinanthropology is generally credited to 
Spray (1987), who introduced its advantages and described its practi-
cal applications in the measurement of psychomotor behavior. Since this 
introduction, many successful applications in Kinanthropology have fol-
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lowed (see Wood & Zhu, 2006 for review). In the past few years, research-
ers in the Czech Republic have used IRT successfully to address several 
kinanthropological	research	questions	(e.g.,	Čepička,	2004;	Štochl,	2008,	
2012)	;	questions	that	would	be	difficult	–	if	not	impossible	–	to	answer	
within the CTT framework.

Application of IRT offers several advantages over CTT. One advantage is 
that IRT employs a common logit scale for both test items characteristics 
(such	as	difficulty)		and	individual’s	level	of	the	theoretical	attribute	being	
measured (often called ability or latent trait level in IRT). Therefore, re-
searchers are able to conclude that when the latent trait level of an individ-
ual	is	higher	than	the	difficulty	of	the	particular	item,	the	“person	is	more	
likely than not to provide a trait-indicating (positive, or true) response” 
(Nering & Ostini, 2010, p. 1). Another unique feature of IRT is that meas-
urement error (the lack of precision in identifying a person’s latent trait 
using the particular item) is conditionally dependent on a latent trait level 
of the examinee (Lord, 1952). This can be useful, for example, in mastery 
testing when a test developer wants to improve measurement precision 
for test takers at a certain latent trait level. Moreover, item characteris-
tics in IRT are not affected by a particular sample used to obtain these 
characteristics (De Champlain, 2010), and likewise, individual latent trait 
estimates are not affected by particular items used to estimate them (Zhu, 
2006). This item/latent trait invariance property in combination with the 
IRT’s focus on the items rather than a test as a whole (Lord, 1953), enables 
a researcher to rank individuals on the same theoretical continuum (i.e., 
assessing some underlying trait or ability) even if they have been present-
ed different set of items/indicators from a larger pool designed to measure 
the theoretical construct (latent trait) of interest. As Wainer (2000, p. 9) 
suggests, in all practical terms, this means the test developer does not have 
to “present all items to all individuals, only enough items to allow us to 
accurately situate an examinee on the latent continuum.” Using this IRT 
approach, a tester can create a reliable test customized to each examinee. 
Customizing a test to examinee’s trait level – or what is termed “adaptive 
testing” cannot be easily accomplished within the CTT framework but is 
a natural extension of using IRT.



4. Item Response Theory (IRT)

4.1 Introduction

Item response theory (IRT), also known as latent trait theory or item char-
acteristic curve theory (Hambelton et al., 2010), posits that the probability 
of a particular response to an item (or generally to any type of empirical 
indicator – such as questions in a survey questionnaire, tests of motor abil-
ity or measures of aptitude) is a mathematical function of the item proper-
ties	(e.g.,	item	difficulty)		and	an	individual’s	level	of	the	latent	trait	to	be	
measured. IRT models can be categorized based on several different fea-
tures (Thissen & Steinberg, 1986). One of the most common distinctions 
is whether they are uni- or multidimensional. In unidimensional models, 
responses to items are assumed to be accounted for by a single latent vari-
able; that is, all items measure the same underlying theoretical construct – 
latent	trait	(Sijtsma	&	Molenaar,	2002)	.	Items	within	a	test	may,	however,	
capture several different, but possibly related latent traits. It is possible 
in such a case that different latent traits are measured by independent 
(non-overlapping) sets of items – a situation referred to as between-item 
multidimensionality. A common practice then is to apply unidimensional 
IRT models for each independent cluster of items separately. Within-item 
multidimensionality, on the other hand, occurs when more than one latent 
trait or ability underlie a response to a particular item within a test. Multi-
dimensional IRT models (Mulder & van der Linden, 2010) are well suited 
to deal effectively with within-item multidimensionality. Given the focus 
of the empirical portion of this study only unidimensional models will be 
considered in subsequent passages.

Another	frequently	discussed	classification	distinguishes	dichotomous	
and polytomous IRT models, respectively. Dichotomous IRT models were 
developed for test items with only two possible response outcomes – (bi-
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nary-scored) items coded for example: correct/incorrect, true/false, yes/
no, apply/not apply, etc. Increased use of polytomously scored items – 
items with more than two response alternatives (i.e., Likert-type items, 
multiple choice items when each category is scored separately) – led to 
the development of polytomous IRT models (see Nerning & Ostini, 2010; 
Ostini & Nerning, 2006). According to Ostini and Nerning (2006), advan-
tages of modeling polytomous items is that “they are able to provide more 
information over wider range of the trait continuum than are dichotomous 
items.” Nevertheless, dichotomous IRT models are still widely used and are 
considered	a	foundation	for	models	used	even	to	fit	polytomously	scored	
data. Although polytomous IRT models will be used later in this study, ba-
sic	dichotomous	IRT	models	are	introduced	briefly	in	the	following	section.

4.2 Unidimensional dichotomous IRT models

As already noted above IRT models yield the probability of a particular 
response to an item as a function of examinee’s latent trait level and item 
properties, respectively. In the case of dichotomous items the simplest IRT 
model	defines	this	probability	as	a	logistic	function:

 ( ) ( )
( ) ( )
θ

θ
θ

−
=

+ −

exp  
    1

1 exp  
j i

j
j i

b
P

b
 (1)

Here ( )θ jP  indicates the probability of examinee j with latent trait θ  re-
sponding to a keyed (correct, or trait indicating) category of item i with dif-
ficulty	b.	This	model	was	first	introduced	by	Danish	mathematician	George	
Rasch (1960) and is commonly referred to as dichotomous Rasch model or 
one-parameter logistic (1-PL) model in the literature (Embretson & Reise, 
2000). The θ  parameter of examinee j is theoretically unrestricted, and is 
quite similar to the well-known z-score, scaled to mean of 0 and standard 
deviation of 1 (it usually ranges from –3 to 3 in typical population)1. Larger 
values of θ  indicate higher latent trait levels. Individuals with higher val-
ues of the latent trait are more likely to get the item correct, or gener-
ally to give a positive (keyed, trait indicating) response to a test item. The 

1 It should be recalled, however, that the logit distribution is not identical to the standard nor-
mal distribution. There are 99.7% of observations within the 3 standard deviations around the 
mean in the standard normal distribution, whereas 90.5% of observations fall into the same 
interval around the mean in the logit distribution.
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